
CQRS
explained with a million dollar idea

What are we going to do?

• The million dollar idea

• Command and query segregation

• Command and query responsibility segregation

• Code structure

• Disclaimer: when (not) to use

The million dollar idea
• Based on my graduation project

• Car/ride-sharing application

• Focus on social aspect  
(you both know this person  
or both sharing the same interest)

• Primarily used for scheduled travel

• Assumptions

• We need CQRS

Command and query
segregation

• Commands

• Changing the state of a system without returning a value

• Queries

• Return a result without changing the state of the system (generating no side-
effects)

• Can be described as use-cases, i.e.

• RegisterRide

• FindRide

• FindRideMatch

Why?

• Ease of mind, you don’t have to worry about
executing queries since you “can’t” break things

• “Out of the box” able to perform commands
asynchronously

Command and query
responsibility segregation

–Martin Fowler

“At its heart is the notion that you can use a
different model to update information than the

model you use to read information.”

Command and query
responsibility segregation

Command and query
responsibility segregation

• Different read and write models

• Domain events

• They describe what happend in the domain  
(for example RideWasCreated, DepartureTimeHasChanged)

• Are dispatched for every change in the domain

• Are used to update the read models

• Side effect: allows traceability and accountability (i.e. the bug
is caused by this sequence of steps)

Why?

• Storing data at the best possible place (No-SQL,
Graph etc) in the best possible format (normalized
or denormalized) for the use-case

• Scalability advantages

• Better performance

The example application

Disclaimer: when (not) to use?
• Be aware that CQRS can overcomplicate your

application, explore alternatives before falling for
the “cool” factor of this pattern

• Consider using CQRS in the following cases

• When working in large teams

• When working with difficult business logic

• When scalability matters

Further reading…

• https://leanpub.com/ddd-in-php - DDD in PHP

• http://getprooph.org/ - The CQRS and event
sourcing components for PHP

https://leanpub.com/ddd-in-php
http://getprooph.org/

